
Factoring Tensor Product Expressions: How Hard Could it Be?
a⊗ b + a⊗ c → a⊗ (b + c)

Jack Beda : jack@beda.ca

Factoring Tensor Product Expressions: How Hard Could it Be?
a⊗ b + a⊗ c → a⊗ (b + c)

Jack Beda : jack@beda.ca

Background

When computing the probabilities for certain outcomes of particle collider experiments to
occur, a particular class of functions keeps appearing. These functions, the multiple poly-
logarithms, satisfy a deep and mysterious algebraic structure. One tool in the examination
of this structure is the coproduct, which takes a complicated multiple polylogarithm expres-
sion and breaks it into simpler parts. The price we pay for this decomposition is that often
the decomposition contains many terms, sometimes more than 20 000. It is essential to
make this more manageable by factoring the expression to a minimum number.

We can abstractify the problem away from the context of particle physics to the purely
mathematical realm. Instead of considering the vector space of multiple polylogarithmic
expressions, we consider an arbitrary vector space. Instead of the coproduct, we consider
an arbitrary tensor product expression. We would like an algorithm that can minimally
factor (i.e. factor to a minimum number of terms) expressions like:

x0 = a1 ⊗ b1 + a1 ⊗ b3 + a2 ⊗ b2 + a2 ⊗ b3 −→ a1 ⊗ (b1 + b3) + a2 ⊗ (b2 + b3) (1)
x1 = a1 ⊗ b1 + a1 ⊗ b2 + a2 ⊗ b1 + a2 ⊗ b2 −→ (a1 + a2)⊗ (b1 + b2) (2)

The Problem

Let V be a vector space. Let {vi}, {uj} ⊂ V for i = 1, 2, . . . , n1, j = 1, 2, . . . , n2 be linearly
independent subsets. Given an unfactored tensor product expression:

x =

n1∑
i=1

n2∑
j=1

cij(vi ⊗ uj) = c11v1 ⊗ u1 + c12v1 ⊗ u2 + · · · + cnvn ⊗ un. (3)

What is the minimum r ∈ Z, such that there exists d
(1)
ij and d

(2)
ij such that we may factor x

as:

x =

r∑
l=1

 n1∑
i=1

d
(1)
li vi

⊗

 n2∑
j=1

d
(2)
lj uj

. (4)

Naive Algorithm

Let’s suppose the expression we need to factor is:

x0 = a1 ⊗ b1 + a2 ⊗ b2 + a1 ⊗ b3 + a2 ⊗ b3. (5)

A naive algorithm might try grouping left terms (a⊗ c + b⊗ c → (a + b)⊗ c), then right
terms (a⊗ b + a⊗ c → a⊗ (b + c)), until no further terms match. Applying such an algo-
rithm starting starting from the left would give:

x0 = a1 ⊗ b1 + a2 ⊗ b2 + (a1 + a2)⊗ b3 (3 terms) (6)

Or from the right:

x0 = a1 ⊗ (b1 + b3) + a2 ⊗ (b2 + b3) (2 terms) (7)

It turns out the factorization with 2 terms is minimal, which isn’t too hard to see from this
example (give it a try!), but we already see the limitations of this algorithm: it can get
stuck. The factorization in Eq. 6 contains no terms that can be grouped, and yet is not
minimal. This algorithm is greedy : it always takes the locally optimal decision, but we have
no guarantee that the final factorization it provides is minimal.

Factoring Algorithm for one Tensor Product

A better algorithm can be acquired by setting the equations for the factored (Eq. 3) and
unfactored (Eq. 4) forms an arbitrary expression x equal and rearranging:

x =

n1∑
i=1

n2∑
j=1

cij(vi ⊗ uj) =

r∑
l=1

 n1∑
i=1

d
(1)
li vi

⊗

 n2∑
j=1

d
(2)
lj uj

 (8)

=

n1∑
i=1

n2∑
j=1

 r∑
l=1

d
(1)
li d

(2)
lj

(vi ⊗ uj) (Expanding) (9)

=⇒ 0 =

n1∑
i=1

n2∑
j=1

cij −
r∑

l=1

d
(1)
li d

(2)
lj

(vi ⊗ uj) (10)

=⇒ cij =

r∑
l=1

d
(1)
li d

(2)
lj . (11)

Identifying the matrices C, D(1), and D(2) with cij, d
(1)
ij , and d

(2)
ij this is saying that a fac-

torization of x in r terms is possible if and only if the coefficient matrix C can be written
as a product of two other matrices of appropriate dimensions:

C
n1×n2

=

(
D(1)T

n1×r

)(
D(2)

r×n2

)
. (12)

Where “ A
n×m

" is shorthand for “the n × m matrix A". A result from linear algebra is that

r = Rank(C) is the smallest integer r such that Eq. 12 holds. Thus we have shown
that the minimum number of terms in a factorization of x is simply the rank of the
coefficient matrix C. Actually finding the factorization (i.e. finding D(1) and D(2)), can be
done in various ways. The computationally fastest is to let R be the reduced row echelon
form of C. Then let D(1)T be matrix formed of all pivot columns of C and D(2) be the
matrix formed of all rows of R that are not entirely zero.

Examples

Let’s return to the example where we claimed x0 had a minimum factorization with 2
terms:

x0 = a1 ⊗ b1 + a2 ⊗ b2 + a1 ⊗ b3 + a2 ⊗ b3 −→ a1 ⊗ (b1 + b3) + a2 ⊗ (b2 + b3). (13)

In this case the two independent subsets of our vector space are {a1, a2} and {b1, b2, b3}.
The unfactored expression has coefficient matrix:

cij =

[
1 0 1
0 1 1

]
ij
. (14)

Indeed you can check that:

x0 = c11 a1 ⊗ b1 + c21 a2 ⊗ b1 + c12 a1 ⊗ b2 + · · · (15)

Importantly, we see that Rank(C) = 2, and so 2 terms is indeed the minimal number of
terms in a factorization of x1. As another example, the coefficient matrix of the unfactored
expression form Eq. 2 for x1 is:

cij =

[
1 1
1 1

]
ij
. (16)

Which has rank 1, as we expect, because it can be factored into a single term. These
are simple examples, but the power of this method is much greater, for example, the
coproduct of the function containing more than 20 000 terms can be factored into as few
as 21 terms.

Generalization to More Tensor Products

We can now minimally factor expressions with one tensor product symbol. How about more? That
is, for some coefficient tensor of order m: ci1i2···im, what is the minimal factorization of:

y =

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑
im=1

ci1i2···im

(
v
(1)
i1

⊗ v
(2)
i2

⊗ · · · ⊗ v
(m)
im

)
. (17)

That is, what is the minimum r such that:

y =

r∑
l=1

 n1∑
i1=1

d
(1)
li1
v
(1)
i1

⊗

 n2∑
i2=1

d
(2)
li2
v
(2)
i2

⊗ · · · ⊗

 nm∑
im=1

d
(m)
lim

v
(m)
im

. (18)

As before, expanding Eq. 18 and comparing the with Eq. 17 yields the relationship:

ci1i2i3···im =

r∑
l=1

d
(1)
li1
d
(2)
li2

· · · d(m)
lim

. (19)

It turns out the minimum r is again given by Rank(C), where here we mean tensor rank. Note that
in the field of tensor decomposition, we use the term tensor order to refer to the number of indices
on a tensor, where the rank of a tensor is totally different, and much harder to compute.

Properties of the Tensor Decomposition

Figure 1: Coefficient tensor of y0.

Unfortunately, it turns out that computation of
tensor rank, let alone tensor decompositions, for
tensors of order greater than 2 is NP-hard. That
is to say, the Clay Math Institute will give anyone
with a polynomial time algorithm a million dollars
for having showing P = NP .

Another surprising property is that tensor rank of
real tensors (of order greater than 2) can differ
over R and over C. For example, the order 2
tensor in Fig. 1 has rank 3 over R but rank 2
over C. In the case of factoring, this means that
the real expression:

y0 = u1 ⊗ v1 ⊗ w1 + u1 ⊗ v2 ⊗ w2 − u2 ⊗ v1 ⊗ w2 + u2 ⊗ v2 ⊗ w1. (20)

Can be minimally factored to three terms over R:

y0 = u1 ⊗ v1 ⊗ (w1 − w2) + u2 ⊗ v2 ⊗ (w1 + w2) + (u1 − u2)⊗ (v1 + v2)⊗ w2. (21)

But minimally factored to two terms over C:

y0 =
1

2
((u1 − iu2)⊗ (v1 + iv2)⊗ (w1 − iw2) + (u1 + iu2)⊗ (v1 − iv2)⊗ (w1 + iw2)). (22)

.

Conclusion

We have presented an efficient algorithm for minimally factoring tensor product expressions. In
particular, this can be used to find a basis of functions appearing in the coproduct. However, we
have seen that (assuming P ̸= NP ) there is no polynomial time algorithm for minimally factoring
expressions involving more than one tensor product. In particular, this means that finding a basis
of functions of the symbol is much more challenging. That said, there do exist exponential time
algorithms for minimal factorizations. This is how Eq. 22 was acquired, but these are far too slow for
expressions with as few as 9 terms. We note here that in the case of the multiple polylogarithms,
since multiple polylogarithms satisfy numerous identities, i.e. they are not linearly independent
from one another, finding a basis involves more than just a minimal factorization.


